Alte Technik muss nicht verstauben – vor allem nicht, wenn sie noch zuverlässig Strom puffert. In meinem Fall: eine APC Smart-UPS SC420 aus einem ausrangierten Wechselautomat – und die perfekte Gelegenheit, eine APC USV an MQTT anzubinden. Denn nur weil ein Gerät alt ist, heißt das nicht, dass es nicht noch etwas zu sagen hat. Und genau das macht es jetzt – über MQTT. – und die perfekte Gelegenheit, eine APC USV an MQTT anzubinden. Ziel: APC USV an MQTT anbinden, um Daten wie Batteriespannung, Ladezustand und Status in ioBroker nutzbar zu machen.
In diesem Artikel zeige ich dir Schritt für Schritt, wie ich die USV über RS232 und einen Netzwerk-Adapter von Waveshare mit einem Python-Skript auslese und an MQTT übergebe – inklusive Copy&Paste-Code, Nerd-Kommentaren und Stolperfallen.
APC nutzt bei vielen seiner USVs eigene Signalbelegungen und akzeptiert keine Standard-RS232-Kabel. Das bedeutet: Wer einfach ein „normales“ serielles Kabel anschließt, bekommt entweder keine Verbindung – oder die USV schaltet sich sogar ab. Deshalb ist ein selbstgebautes Kabel notwendig.
Die richtige Zuordnung (9-polig):
USV TX (Pin 2) an PC RX (Pin 3)
USV RX (Pin 3) an PC TX (Pin 2)
GND (Pin 5) an GND (Pin 5)
Einrichtung des Netzwerkadapters zur MQTT-Anbindung
Nach dem Anschluss über PoE und dem Start hilft das Tool Vircom, um die IP-Adresse und DHCP einzurichten. Danach kannst du das Gerät bequem über das Webinterface konfigurieren:
Wenn du noch tiefer in das serielle APC-Protokoll einsteigen willst – inklusive aller möglichen Kommandos wie Q1, g oder R – findest du auf networkupstools.org eine exzellente Übersicht.
Du kannst nun Visualisierungen bauen, smarte Trigger einrichten oder dich bequem benachrichtigen lassen – beispielsweise per Telegram, Mail oder Sprachassistent.
Fazit: APC USV an MQTT angebunden – und zwar richtig
Die Überraschung: Das alte Gerät konnte mehr, als ich erwartet hatte. Statt „BYE“ sagt es jetzt jeden Tag brav „Hello MQTT“ – und zwar mit überraschend stabilen Werten. Das gibt nicht nur ein gutes Gefühl, sondern bringt auch Transparenz ins Strom-Backup, falls es mal ernst wird. – und warnt mich frühzeitig bei Stromausfällen oder Akkuproblemen.
So wird aus einem staubigen RS232-Port ein smarter Sensor, und der Traum, eine APC USV an MQTT anzubinden, wird Realität – ganz ohne Smart-Slot-Karte oder Spezialsoftware. Außerdem macht es einfach Spaß, Technik zu übertreiben, oder? – und aus einem Blogartikel vielleicht die Inspiration für deinen eigenen Umbau?
Fragen, Ideen oder deinen eigenen Umbau? Ab damit in die Kommentare!
Shelly hat mit der vierten Generation seiner beliebten Smart-Home-Relais ein großes Upgrade veröffentlicht. Die wichtigsten Neuerungen: Matter-Zertifizierung, Apple HomeKit-Unterstützung und Multi-Protokoll-Konnektivität (WLAN, Bluetooth & Zigbee). Doch wer gewinnt beim Duel Shelly Gen 3 VS Gen 4?
Doch was genau unterscheidet Shelly Gen 3 von Shelly Gen 4? Lohnt sich ein Upgrade, oder kannst du weiterhin auf die bewährten Gen 3-Modelle setzen? In diesem Beitrag findest du alle Unterschiede im Detail!
Die wichtigsten Neuerungen von Shelly Gen 4
Multi-Protokoll-Konnektivität: WLAN, Bluetooth & Zigbee
Während Shelly Gen 3 nur WLAN & Bluetooth bot, ist Gen 4 zusätzlich mit Zigbee 3.0 ausgestattet. Dadurch kannst du Shelly Gen 4 nicht nur ins WLAN einbinden, sondern auch in ein Zigbee-Mesh – perfekt für größere Smart-Home-Setups!
💡 Zigbee-Repeater-Funktion: Shelly Gen 4 erweitert dein Zigbee-Netzwerk automatisch, indem er als Mesh-Knoten agiert.
Matter-Zertifizierung – Zukunftssicher für dein Smart Home
Shelly Gen 4 ist offiziell Matter-zertifiziert. Das bedeutet, dass du dein Smart-Home-System herstellerübergreifend steuern kannst – egal ob über Google Home, Amazon Alexa oder Apple HomeKit.
💡 Matter sorgt für bessere Kompatibilität: Du kannst Shelly Gen 4 direkt in Matter-fähige Systeme einbinden, ohne Cloud-Zwang!
Offizielle Apple HomeKit-Unterstützung
Ein großer Schritt nach vorne: Shelly Gen 4 funktioniert jetzt mit Apple HomeKit. Du kannst deine Shelly-Geräte mit der Apple Home-App oder per Siri steuern – ohne Umwege über Drittanbieter-Integrationen.
📌 Shelly Gen 3 funktioniert nicht mit Apple HomeKit, während Gen 4 diese Unterstützung von Haus aus mitbringt.
Der WaterMeV2 – Feuchtigkeitssensor mit ESP8266 und OLED-Display kann die Bodenfeuchtigkeit in Echtzeit überwachen und die Daten direkt per MQTT an dein Smart Home System senden. Dieses Upgrade unseres vorherigen WaterMe Sensors bietet Verbesserungen in der Hardware und Software, eine optimierte Reset-Funktion sowie ein ansprechendes Gehäuse, das du kostenlos auf meinem Cults3D-Account herunterladen kannst (hier klicken).
Vorteile von WaterMev2
Echtzeitüberwachung der Bodenfeuchtigkeit
Anbindung an MQTT für Smart Home Integration
WiFi-Manager für einfache WLAN-Konfiguration
OLED-Display für lokale Anzeige
5-Sekunden-Reset-Taster für eine einfache Neukonfiguration
Kostenloses 3D-gedrucktes Gehäuse zum Schutz der Hardware
Benötigte Komponenten
Für dieses Projekt benötigst du folgende Komponenten (mit Affiliate-Links):
Diese Funktion sorgt dafür, dass der WiFiManager nur zurückgesetzt wird, wenn der Taster mindestens 5 Sekunden gedrückt wird. Dadurch wird ein versehentliches Zurücksetzen verhindert.
Damit die Elektronik geschützt ist, kannst du dir ein passendes Gehäuse für WaterMev2 kostenlos auf meinem Cults3D-Account herunterladen: Hier geht’s zum Gehäuse.
Fazit
Mit dem WaterMeV2 – Feuchtigkeitssensor mit ESP8266 und OLED-Display kannst du ganz einfach Werte überwachen und in dein Smart Home System integrieren. Dank der MQTT-Integration kannst du die Daten bequem weiterverarbeiten und mit dem OLED-Display behältst du stets den Überblick. Baue dein eigenes WaterMeV2 jetzt nach und lade dir das passende Gehäuse herunter!
Hast du Fragen oder Verbesserungsvorschläge? Schreib sie in die Kommentare!
Für alle, die gleichzeitig Technikfreaks und Hobbygärtner sind, habe ich hier etwas Spannendes: das WaterMe DIY Bewässerungssystem. Ein DIY-Bewässerungssystem, das auf dem cleveren ESP8266 Mikrocontroller basiert, um deine Pflanzen optimal und smart zu versorgen.
Die Bauteile des WaterMe DIY Bewässerungssystem
1. Der Bodenfeuchtesensor: Kernstück des Systems ist der kapazitive Bodenfeuchtesensor* (bezahlter Link), der dank seiner Technologie dauerhaft und zuverlässig die Feuchtigkeit im Boden misst.
2. Der D1 Mini ESP8266 Entwicklungsboard: Der D1 Mini* (bezahlter Link) ist ein kleines Kraftpaket mit WLAN-Fähigkeit, ideal für alle IoT-Projekte.
3. Das 3D-gedruckte Gehäuse: Mein selbst entworfenes Gehäuse ist auf Cults3D kostenlos erhältlich und nutzt Gewindeeinsätze* (bezahlter Link). Hier findet Ihr passende Mikro-Schrauben* (bezahlter Link).
Erweiterte Funktionen und technische Details
Das „WaterMe“ System nutzt einen AP für die WLAN-Verbindung, MQTT und NTP, um die Funktionalität über das reine Messen der Bodenfeuchtigkeit hinaus zu erweitern.
MQTT (Message Queuing Telemetry Transport): Dieses leichte und effiziente Protokoll ermöglicht es dem System, Messdaten über das Internet zu versenden. Im Code werden MQTT-Einstellungen konfiguriert, um Sensorwerte an einen Server zu senden, der diese dann für Monitoring oder automatische Bewässerungsaktionen verwenden kann.
NTP (Network Time Protocol): Die Integration von NTP hilft dabei, die exakte Zeit für das Logging der Sensorwerte zu erhalten. Dies ist besonders nützlich, um zu bestimmen, wann die Pflanzen zuletzt gegossen wurden und wann sie wieder Wasser benötigen.
Anschluss des ESP
Der Anschluss des ESP ist sehr einfach. Es muss lediglich die rote Plus-Leitung an 5V, die schwarze Minus-Leitung an GND und die gelbe Signalleitung an A0 des ESP angeschlossen werden.
Arduino Code Erklärung
Der untenstehende Arduino-Sketch ist das Herzstück von des WaterMe DIY Bewässerungssystem. Er verbindet den D1 Mini mit deinem WLAN, misst die Bodenfeuchtigkeit und sendet diese Daten über MQTT. Den kompletten Code findest du nachfolgend: